5 resultados para Vibrio vulnificus, Genome sequencing, Hybrid assembly, Pathogenesis, Virulence factor, Hemolysin, Secretion system

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um dos maiores avanços científicos do século XX foi o desenvolvimento de tecnologia que permite a sequenciação de genomas em larga escala. Contudo, a informação produzida pela sequenciação não explica por si só a sua estrutura primária, evolução e seu funcionamento. Para esse fim novas áreas como a biologia molecular, a genética e a bioinformática são usadas para estudar as diversas propriedades e funcionamento dos genomas. Com este trabalho estamos particularmente interessados em perceber detalhadamente a descodificação do genoma efectuada no ribossoma e extrair as regras gerais através da análise da estrutura primária do genoma, nomeadamente o contexto de codões e a distribuição dos codões. Estas regras estão pouco estudadas e entendidas, não se sabendo se poderão ser obtidas através de estatística e ferramentas bioinfomáticas. Os métodos tradicionais para estudar a distribuição dos codões no genoma e seu contexto não providenciam as ferramentas necessárias para estudar estas propriedades à escala genómica. As tabelas de contagens com as distribuições de codões, assim como métricas absolutas, estão actualmente disponíveis em bases de dados. Diversas aplicações para caracterizar as sequências genéticas estão também disponíveis. No entanto, outros tipos de abordagens a nível estatístico e outros métodos de visualização de informação estavam claramente em falta. No presente trabalho foram desenvolvidos métodos matemáticos e computacionais para a análise do contexto de codões e também para identificar zonas onde as repetições de codões ocorrem. Novas formas de visualização de informação foram também desenvolvidas para permitir a interpretação da informação obtida. As ferramentas estatísticas inseridas no modelo, como o clustering, análise residual, índices de adaptação dos codões revelaram-se importantes para caracterizar as sequências codificantes de alguns genomas. O objectivo final é que a informação obtida permita identificar as regras gerais que governam o contexto de codões em qualquer genoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The non-standard decoding of the CUG codon in Candida cylindracea raises a number of questions about the evolutionary process of this organism and other species Candida clade for which the codon is ambiguous. In order to find some answers we studied the transcriptome of C. cylindracea, comparing its behavior with that of Saccharomyces cerevisiae (standard decoder) and Candida albicans (ambiguous decoder). The transcriptome characterization was performed using RNA-seq. This approach has several advantages over microarrays and its application is booming. TopHat and Cufflinks were the software used to build the protocol that allowed for gene quantification. About 95% of the reads were mapped on the genome. 3693 genes were analyzed, of which 1338 had a non-standard start codon (TTG/CTG) and the percentage of expressed genes was 99.4%. Most genes have intermediate levels of expression, some have little or no expression and a minority is highly expressed. The distribution profile of the CUG between the three species is different, but it can be significantly associated to gene expression levels: genes with fewer CUGs are the most highly expressed. However, CUG content is not related to the conservation level: more and less conserved genes have, on average, an equal number of CUGs. The most conserved genes are the most expressed. The lipase genes corroborate the results obtained for most genes of C. cylindracea since they are very rich in CUGs and nothing conserved. The reduced amount of CUG codons that was observed in highly expressed genes may be due, possibly, to an insufficient number of tRNA genes to cope with more CUGs without compromising translational efficiency. From the enrichment analysis, it was confirmed that the most conserved genes are associated with basic functions such as translation, pathogenesis and metabolism. From this set, genes with more or less CUGs seem to have different functions. The key issues on the evolutionary phenomenon remain unclear. However, the results are consistent with previous observations and shows a variety of conclusions that in future analyzes should be taken into consideration, since it was the first time that such a study was conducted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The last decades of the 20th century defined the genetic engineering advent, climaxing in the development of techniques, such as PCR and Sanger sequencing. This, permitted the appearance of new techniques to sequencing whole genomes, identified as next-generation sequencing. One of the many applications of these techniques is the in silico search for new secondary metabolites, synthesized by microorganisms exhibiting antimicrobial properties. The peptide antibiotics compounds can be classified in two classes, according to their biosynthesis, in ribosomal or nonribosomal peptides. Lanthipeptides are the most studied ribosomal peptides and are characterized by the presence of lanthionine and methylanthionine that result from posttranslational modifications. Lanthipeptides are divided in four classes, depending on their biosynthetic machinery. In class I, a LanB enzyme dehydrate serine and threonine residues in the C-terminus precursor peptide. Then, these residues undergo a cyclization step performed by a LanC enzyme, forming the lanthionine rings. The cleavage and the transport of the peptide is achieved by the LanP and LanT enzymes, respectively. Although, in class II only one enzyme, LanM, is responsible for the dehydration and cyclization steps and also only one enzyme performs the cleavage and transport, LanT. Pedobacter sp. NL19 is a Gram-negative bacterium, isolated from sludge of an abandon uranium mine, in Viseu (Portugal). Antibacterial activity in vitro was detected against several Gram-positive and Gram-negative bacteria. Sequencing and in silico analysis of NL19 genome revealed the presence of 21 biosynthetic clusters for secondary metabolites, including nonribosomal and ribosomal peptides biosynthetic clusters. Four lanthipeptides clusters were predicted, comprising the precursor peptides, the modifying enzymes (LanB and LanC), and also a bifunctional LanT. This result revealed the hybrid nature of the clusters, comprising characteristics from two distinct classes, which are poorly described in literature. The phylogenetic analysis of their enzymes showed that they clustered within the bacteroidetes clade. Furthermore, hybrid gene clusters were also found in other species of this phylum, revealing that it is a common characteristic in this group. Finally, the analysis of NL19 colonies by MALDI-TOF MS allowed the identification of a 3180 Da mass that corresponds to the predicted mass of a lanthipeptide encoded in one of the clusters. However, this result is not fully conclusive and further experiments are needed to understand the full potential of the compounds encoded in this type of clusters. In conclusion, it was determined that NL19 strain has the potential to produce diverse secondary metabolites, including lanthipeptides that were not functionally characterized so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low level protein synthesis errors can have profound effects on normal cell physiology and disease development, namely neurodegeneration, cancer and aging. The biology of errors introduced into proteins during mRNA translation, herein referred as mistranslation, is not yet fully understood. In order to shed new light into this biological phenomenon, we have engineered constitutive codon misreading in S. cerevisiae, using a mutant tRNA that misreads leucine CUG codons as serine, representing a 240 fold increase in mRNA translational error relative to typical physiological error (0.0001%). Our studies show that mistranslation induces autophagic activity, increases accumulation of insoluble proteins, production of reactive oxygen species, and morphological disruption of the mitochondrial network. Mistranslation also up-regulates the expression of the longevity gene PNC1, which is a regulator of Sir2p deacetylase activity. We show here that both PNC1 and SIR2 are involved in the regulation of autophagy induced by mistranslation, but not by starvation-induced autophagy. Mistranslation leads to P-body but not stress-granule assembly, down-regulates the expression of ribosomal protein genes and increases slightly the selective degradation of ribosomes (ribophagy). The study also indicates that yeast cells are much more resistant to mistranslation than expected and highlights the importance of autophagy in the cellular response to mistranslation. Morpho-functional alterations of the mitochondrial network are the most visible phenotype of mistranslation. Since most of the basic cellular processes are conserved between yeast and humans, this study reinforces the importance of yeast as a model system to study mistranslation and suggests that oxidative stress and accumulation of misfolded proteins arising from aberrant protein synthesis are important causes of the cellular degeneration observed in human diseases associated to mRNA mistranslation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.